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Abstract. A formalism for calculating the bulk and surface spin waves in the ground-state
frustrated superantiferromagnetic Heisenberg system is presented. The magnetic structure
consists of semi-infinite ferromagnetic chains which are antiferromagnetically coupled. The
surface spin-wave theory introducing the matching method is used to calculate the energy of
the surface magnon. The magnon dispersion curve is calculated as a function of the frustration
parameterJ 1v

AB/J
2v
AA(BB) and the bulk–surface exchange ratioε1v‖

ij = J 1vs
AB /J

1v
AB . The behaviour

of the bulk magnon as well as the acoustic and optical surface modes which are found to be very
sensitive to the surface exchange and anisotropy are interpreted by means of aJ 1v

AB/J
2v
AA(BB)

ratio. The results show that a high instability of bulk and surface spin precession occurs for
0 < J 1v

AB/J
2v
AA(BB) 6 4, and disappears forJ 1v

AB/J
2v
AA(BB) = 4. The latter value corresponds to

an antiferromagnetic arrangement of the ground state.

1. Introduction

There have been an increasing number of investigations dealing with uniformly frustrated
systems. These systems, which are periodically defined, have been given exact treatments,
using different approximations [1–3]. Apart from the evident theoretical interest, uniformly
frustrated systems can be found in real physical systems such as antiferromagnetic FCC
alloys and arrays of planar Josephson junctions in transverse magnetic fields [4]. In other
respects, numerous 2D and 3D geometrically frustrated magnetic structures have been
widely investigated during the last decade from both the experimental and the theoretical
points of view, as reported in the literature (see for example [5]). Examples of this
behaviour are exhibited by 3d-transition-metal oxides [6, 7] and fluorides [8, 9]. In some
crystalline compounds, one or several paramagnetic ions build up cationic triangles; so
the antiferromagnetic nature of the superexchange interactions or the presence of single-
ion anisotropy leads to non-collinear magnetic configurations at absolute zero because of
geometrical magnetic frustration [7–9].

In spite of a collinear magnetic configuration, it has been suggested that magnetic
frustration may occur in simple cubic antiferromagnets such as MF3 (M = Cr,Fe,V, . . .).
This frustration originates from the competition of antiferromagnetic exchange interactions
between the first- (J 1v

AB) inter-sublattice nearest and the second- (J 2v
AA(BB)) intra-sublattice

next-nearest neighbours. This behaviour was recently confirmed by computer simulations,
and different types of magnetic configuration were evident at absolute zero, associated with
two domains of values ofJ 1v

AB/J
2v
AA(BB) [10]. The constraint functionFc which estimates

the degree of magnetic frustration is defined by comparing the magnetic energy(Ec), which
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Figure 1. Magnetic configurations established atT = 0 corresponding to the constraint function
Fc plotted with |SA| = |SB | = 5/2 as a function of [J 1v

AB/J
2v
AA, J

1v
AB/J

2v
BB ] in the basal plane.

results from the system of interacting spins, to the energy(Eb) calculated for the same
magnetic system assuming non-frustrated interactions. The expression is given as follows:

Fc = −Ec
Eb
= −

(∑
〈i,j〉

J 1v
ABS

(A)
i S

(B)
j +

∑
〈i,i ′〉

J 2v
AAS

(A)
i S

(A)
i ′ +

∑
〈j,j ′〉

J 2v
BBS

(B)
j S

(B)
j ′

)

×
(∑
〈i,j〉
|J 1v
AB ||S(A)i ||S(B)j | +

∑
〈i,i ′〉
|J 2v
AA||S(A)i ||S(A)i ′ | +

∑
〈j,j ′〉
|J 2v
BB ||S(B)j ||S(B)j ′ |

)−1

.

(1.1)

The functionFc is plotted in figure 1.
Let us recall you briefly the most significant results.

(i) For J 1v
AB/J

2v
AA(BB) > 4 (the domain whereFc tends asymptotically to−1), the

magnetic configuration corresponds to that in a frustrated cubic antiferromagnet ground
state: the magnetic exchange interactions between the first neighbours are satisfied whereas
those between the second-nearest neighbours are not.

(ii) For 0 < J 1v
AB/J

2v
AA(BB) 6 4 (the domain whereFc = −1/3), the magnetic structure

results in ferromagnetic chains which are antiferromagnetically coupled—the so-called
ground-state superantiferromagnetic arrangement—for which evidence was recently reported
from the 2D Heisenberg model [11].

So far, to our knowledge, no study has been reported on bulk and surface spin waves in
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this magnetic configuration. This has motivated the present work.
From a theoretical point of view, one of the calculation methods successfully used on the

magnetic properties of surfaces and resonances is the matching method [12]. This approach
makes use of secular equations of spin motion established for the bulk of the semi-infinite
magnetic system, which is shown to contain all of the information concerning travelling
modes, as well as evanescent modes, in the direction perpendicular to the magnetic surface.
The eigenvalue matrix is derived from the Heisenberg Hamiltonian, and the energies of
the localized states for the surface magnons are obtained using this method, which consists
in matching the properties of bulk magnons with evanescent spin waves on the surface.
The existence, the nature and the shape of the solutions are discussed in terms of surface
exchange parameters, by taking into account the results of simulation.

Firstly, in next section we present the bulk dynamical properties, and the surface spin-
wave eigenvalue equation is derived using the random-phase approximation. Then, in
section 3 the theory of the matching procedure method used in order to describe the localized
energy states of surface magnons is developed. The bulk and surface spin-wave spectra are
discussed in section 4, and concluding remarks are summarized in section 5.

2. Bulk dynamical properties

The qualitative features of surface spin waves can be easily illustrated using the (001)
face of the simple cubic structure. The crystal is assumed to be infinite in thex- and
y-directions and extended fromz = 0 to z = ∞. The coordinate system for the (001)
surface is illustrated in figure 2. Thez-axis is chosen as the inward normal to the
surface, whereas thex–y plane is always parallel to the surface plane. Layers which
are parallel to the surface are numbered initially, the surface being considered as the
first layer. Beyond the second layer, all of the exchange interactions have the bulk value
J

1(2)v
AB (i, j) for antiferromagnetic inter-sublattice (A–B) nearest and next-nearest neighbours,

and J 1v
AA(BB)(i, i(j, j)) for ferromagnetic intra-sublattice (A–A (B–B)) nearest neighbours

only. The nearest- and the next-nearest-neighbour exchange interactions between spins
on the surface are respectively described byJ 1vs

AB (i, j) and J 2vs
AA(BB)(i, i(j, j)), and the

interactions between the first and second layers byJ 2v⊥
AB (i, j) andJ 1v⊥

AA(BB)(i, i(j, j)).
The general exchange Hamiltonian for two interpenetrating ferromagnetic sublattices A

and B extended to the second-nearest-neighbour exchange interactions including the Zeeman
effect is expressed as

H =
∑
〈i,j〉

J
1(2)v
AB (i, j)S

(A)
i S

(B)
j +

∑
〈i,i ′(j,j ′)〉

J
1(2)v
AA(BB)(i, i

′(j, j ′))SA(B)i(j) S
A(B)

i ′(j ′)

+ µA(B)HA(B)

(n)

∑
〈i,(j)〉

S
A(B)

i(j) . (2.1)

Here, µA(B) = gµb are the gyromagnetic ratios for ions on A and B sublattices
respectively. i and i ′ run over the sublattice A sites only,j and j ′ over the sublattice
B sites only.HA(B)

(n) = H0 + HA(B)

a(n) are effective fields experienced by the ions on the A
and B sublattices respectively, and are due to the externally applied fieldH0 and to the
effective anisotropy fieldsHA(B)

a(n) acting on thenth layer. They are taken to lie along the
easy direction of magnetization, which itself is taken to be the direction of thez-axis. We
takeHA(B)

a(n) to beHA(B)

a(1) on the surface andHA(B)
a otherwise. The summation in (2.1) is

over all distinct pairs.
We define the spin-lowering operatorsS±(λ)` = (1/√2)(SX(λ)` ± iSY(λ)` ) with λ = A or

B. Due to the 2D periodicity of the surface layer, we define the wave vectork‖ = (kx, ky)
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Figure 2. The (001) surface of a simple cubic superantiferromagnet. Beyond the second layer,
all exchange interactions have the bulk valueJ 1(2)v

AB (i, j) for antiferromagnetic inter-sublattice
(A–B) nearest and next-nearest neighbours, andJ 1v

AA(BB)(i, i
′(j, j ′)) for ferromagnetic intra-

sublattice (A–A (B–B)) nearest neighbours only. The nearest- and the next-nearest-neighbour
exchange interactions between spins on the surface were respectively defined byJ 1vs

AB (i, j) and
J 2vs
AA(BB)(i, i

′(j, j ′)), and the interaction between the first and second layers byJ 2v⊥
AB (i, j) and

J 1v⊥
AA(BB)(i, i

′(j, j ′)), respectively.

in the reciprocal space, and the operatorsα+k‖ , β
+
k‖ for each sublattice as

α+k‖ =
∑
〈i〉
S
+(A)
i e−ik‖ri and S

+(A)
i =

∑
〈k〉
α+k‖e

−ik‖ri

β+k‖ =
∑
〈j〉
S
+(B)
j e−ik‖rj and S

+(B)
j =

∑
〈k〉
β+k‖e

−ik‖rj .
(2.2)
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ri andrj denote thei- andj -atom vector positions on thex–y plane, respectively.
The equation of motion i ¯h dS+` /dt = [S+` , H ] leads to a two-sublattice system:

i h̄α̇+k‖ = D11α
+
k‖ +D12β

+
k‖

i h̄β̇+k‖ = D21α
+
k‖ +D22β

+
k‖

(2.3)

where theDσξ (h̄ω, J
1(2)v
AB , J 2v

AA(BB), z
1(2)v
ij , z

1(2)v
ii ′(jj ′), SA(B), H

A(B)
n ) are given in appendix 1.

Herez1(2)v
ij represents the inter-sublattice (A–B) number of nearest- and the second-nearest-

neighbour atoms, respectively, andz1(2)v
ii(jj) corresponds to the intra-sublattice (A–A (B–B))

numbers.
In order to introduce the amplitude of precessional spin waves, the two-dimensional

spatial Fourier transform operatorL(λ)(R, ω) was defined by

L(λ)(Ri(j), ω) = (2πa)−2
∫

dk‖ exp(ik‖ηi(j))U
(λ)

n(Ri(j))
(k‖, ω) (n > 1) (2.4)

with L(λ) = α+k‖ (β
+
k‖) if λ = A (B), and the quantitiesU(λ)

n(Ri(j))
(k‖, ω) are spin-wave

amplitudes for theλth-sublattice atomi (j) on thenth layer located atRi(j). The surface
corresponds to the layer labelled byn = 1. Here the notation is such thatRi(j) = (ηi(j), na),
whereηi(j) is a two-dimensional position vector of the atomi (j) in thex–y plane, andna
is the coordinate position normal to the surface (a is the layer spacing). The inter-sublattice
(A–B) and intra-sublattice (A–A (B–B)) nearest- and the next-nearest-neighbour vectors are
denoted by11(2)v

ij and11(2)v
ii ′(jj ′), respectively.

Introducing the following parameters:

E = h̄ω − gµbH0

J 1vs
AB S

ε
1v‖
ij =

J 1vs
AB

J 1v
AB

ε
2v‖
ii ′(jj ′) =

J 2vs
AA(BB)

J 1v
AB

ε2v
ii ′(jj ′) =

J 2v
AA(BB)

J 1v
AB

ε1v
ii ′(jj ′) =

J 1v
AA(BB)

J 1v
AB

(2.5)

ε1v⊥
ii ′(jj ′) =

J 1v⊥
AA(BB)

J 1v
AB

ε1v
ii ′(jj ′) =

J 1v
AA(BB)

J 1v
AB

ε2v
ij =

J 2v
AB

J 1v
AB

ε2v⊥
ij =

J 2v⊥
AB

J 1v
AB

.

The equations for the spin-wave amplitude of eachnth sublattice layer, which are
obtained from equations (2.3), (2.4) and (2.5), can be written in the matrix form[

Mb
] ∣∣U(λ)

n

〉 = |0〉 (2.6)

where the matrix elementsMb
σξ (E, J

1vs
AB , J 1(2)v

AB , J
1(2)v
AA(BB), εuw, ε1(2)v‖

uw , ε1(2)v⊥
uw , γ 1(2)v(‖,⊥)

pq (k‖),
H
A(B)

a(n) ) are given in appendix 2, and
∣∣U(λ)

n

〉
is the vector column defined by

∣∣U(λ)
n

〉 =



U
(A)

1

U
(B)

1

U
(A)

2

U
(B)

2
·
·

U(A)
n

U(B)
n

·


.
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The coefficientsγ 1v‖(⊥)
pq (k‖) andγ 2v‖(⊥)

pq (k‖) are as follows:

γ
1v‖
ij (k‖) = 1

z
1v‖
ij

∑
〈11v‖

ij 〉
eik‖1

1v‖
ij = 1

2

[
cos(kxa)+ cos(kya)

]
γ 1v⊥
ii ′(jj ′)(k‖) =

1

z1v⊥
ii(jj)

∑
〈11v⊥

ii(jj)〉
eik‖11v⊥

ii(jj) = 1

γ
2v‖
ii ′(jj ′)(k‖) =

1

z
2v‖
ii(jj)

∑
〈11v‖

ii(jj)〉
eik‖1

1v‖
ii(jj) = 1

2

[
cos(kx + ky)a + cos(kx − ky)a

]
γ 2v⊥
ij (k‖) = 1

z2v⊥
ij

∑
〈12v⊥

ij 〉
eik‖12v⊥

ij = 1

2

[
cos(kxa)+ cos(kya)

]
.

(2.7)

In obtaining equation (2.6), we have employed a random-phase approximation and
replacedSZi(j) by its thermal expectation value. At absolute zero,T = 0, all of the quantities
〈SZn 〉 → S, whereS is the magnitude of the spin of the magnetic ion. At low temperatures,
the departure of〈SZ〉 from S, due to thermal excitation of spin waves, is small. In this
temperature range,〈SZn 〉 is approximately uniform, except near the surface. Mills and
Maradudin [13] have concluded that the deviation1n = S − 〈SZn 〉 is twice as large for the
surface spins(n = 1) as for the bulk spins (n → ∞). The principal result of this spatial
variation in〈SZn 〉 is to produce an effect similar to a weakening of the exchange constants at
the surface. As the temperature increases, the effect of the surface on the spatial variation
of the magnetization becomes more important. The numbers of layers whose magnetization
is substantially lower than that of the bulk increases with increasing temperature. In this
work, we shall limit our discussion toT = 0, for which 〈SZn 〉 = S for all n.

3. Model surface spin waves

Let us consider the (001) surface of a semi-infinite superantiferromagnetic lattice with
|SA| = |SB | = 5/2 (see figure 2). Thus each atomic spin sitei (j) of each corresponding
λ-sublattice will be described by two integers (ηi(j), na) as previously defined.

In general, the precessional amplitude field of quantum spins in the bulk region(n > 3)
can be described from group theory, including the translation operator properties [12, 14]
via a general linear development on a complete set of the evanescent and bulk(ne + nb)
modes:

U(n, λ) =
ne+nb∑
ζ=1

PζC(λ, ρζ )ρ
n−3(E, k‖, ζ ) (3.1)

where the weighting coefficientsPζ characterize the contributions of different modes in
the bulk precessional amplitude field, and theC(λ, ρζ ) are the corresponding polarization
vectors which represent the cofactor of the(2× 2) dynamical matrixD obtained from the
previous expression, equation (2.3), with the condition

ne+nb∑
ζ=1

∣∣C(λ, ρζ )∣∣2 = 1. (3.2)

Owing to the 2D periodic character established by the mean-field approximation for the
surface region, a wave vectork‖ characterizes a two-dimensional Brillouin magnetic cell.
Using the quantitiesϕx = kxa, ϕy = kya andρ = eikza, a set of evanescent modes in the



Spin waves of the Heisenberg system 2921

bulk region is obtained using equation (2.3) such that the matrix determinant det(D) = 0,
which leads to a polynomialψ(ρ) equation form, giving:

ψ
[
ρ(E, J

1(2)v
AB , J

1(2)v
AA(BB), φx, φy, z

1(2)v
ij , z1(2)v

ii(jj)
, SA(B), H

A(B)
n )

]
= 0. (3.3)

Satisfying equation (3.3), there exists a trivial solution which results from the secular
equation of the fourth degree inρ. Both phase factorsρ andρ−1 are solutions, because this
system is Hermitian. We can then obtain a trivial solution which yields aρ-secular equation,
in which for each point in the space(E, k‖), there are four pairs of roots(ρ, ρ−1), with
nb roots ρ such that|ρ| = 1 describes the projected bulk magnon modes on the surface,
represented by the shaded area in the figures plotted, andne roots ρ such that|ρ| < 1
describes evanescent modes. The space(E, k‖) is hence divided into bulk magnon bands
(nb > 0), and zones(nb < 0) within which the density of states of bulk magnons vanishes.
The rootsρ for which |ρ| > 1, which give divergent solutions at infinity, are not taken into
account in the present analysis.

The analysis of surface magnon branches requires the knowledge of the complete set of
evanescent modes in the bulk region. These can be characterized by a complex phase factor
which describes the decrease of the precessional amplitude with increasing penetration into
the crystal [12]. Denoting this factor in the normal direction to the surface asρ, the bulk and
evanescent modes of magnons can be characterized by|ρ| = 1 and|ρ| < 1, respectively.

Denoting the vector composed by the coefficientsPζ introduced above as|P 〉, and the
vector composed via a choice of a set of six consecutive componentsU(λ)

n of the surface
and matching regions(1 6 n 6 3) as |U(λ)〉, and using equation (3.1), one obtains the
matrix equations

|U(λ)〉 = [A(E, ε1(2)v
uw , γ 1(2)v(‖,⊥)

pq (k‖, ρζ ), C(λ, ρζ )
] |P 〉 (3.4)

|P 〉 = [A(E, ε1(2)v
uw , γ 1(2)v(‖,⊥)

pq (k‖, ρζ ), C(λ, ρζ )
]−1 |U(λ)〉 (3.5)

where [A] is a (4× 4) matrix whose elementsAσξ (E, ε1(2)v
uw , γ

1(2)v(‖,⊥)
pq (k‖, ρζ ), C(λ, ρζ ))

are deduced using equation (3.1). Thus, on successively applying (3.4) in the linear system
(3.3) for the componentsU(λ)

n , and then (3.5) to eliminate the coefficientsPζ , the linear
homogeneous system becomes

[E2I −Ms(ϑ, κ, {ρ})]|U(λ)
n 〉 = |0〉 (3.6)

whereI is the unit matrix and

ϑ, κ = φ(λ)(J 1vs
AB , J

1(2)v
AB , J

1(2)v
AA(BB), εuw, ε

1(2)v‖
uw , ε1(2)v⊥

uw , γpq(k‖, ρ), E).

In equation (3.6),|U(λ)
n 〉 is a vector amplitude of the sublatticeλ on the nth layer

near the surface and matching regions,Ms(ϑ, κ) is a (6×6) mean dynamical matrix which
describes the spin-wave dynamics of the system, and{ρ} is a set of theζ = 1, 2, . . . , ne+nb
roots ρ(E, J 1(2)v

AB , J
1(2)v
AA(BB), ϕx, ϕy, SA(B),H

A(B)
n ) given by theρ-secular equation (3.3), in

the (E, k‖) space. A non-trivial solution|U(λ)
n 〉 requires that the determinant of this system

vanishes, which defines an algebraic equation inE, whose real and positive solutionsEs(k‖)
yield the mean surface magnon branches in thenb-zones, and the surface resonances in the
zones wherenb 6= 0. Consequently, the localized states of magnons can be calculated also
when the determinant system (3.6) vanishes:

det(Ms) = 0. (3.7)

The matrix elementsMs are developed in appendix 3.
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Figure 3. Energies of bulk and surface spin waves forJ 1v
AB/J

2v
AA(BB) = 1 plotted in the [110]

surface direction. The variation of the acoustic and optical modes at the surface relative to the
bulk magnon domain is given as a function of the ratioε1v‖

ij = J 1vs
AB /J

1v
AB .

4. Numerical results and discussion

In the present paper, the localized energy states for the surface magnons were calculated
in the [110] direction for the first bidimensional magnetic cell. The evolutions of surface
magnons are reported in figures 3 to 5 as functions of the exchange bulk–surface ratioε

1v‖
ij

to the values of the frustration parameterJ 1v
AB/J

2v
AA(BB) = 1, 3, 4. The matching technique

shows that the surface eigenstates exist within the bulk continuum of states. An excitation
corresponding to a point(E0, k0

‖) in the continuum which is localized near the surface would
decay rapidly into non-local bulk-type states. The surface states change their magnetic
character at critical values ofε1v‖

ij which strongly depend on the nature of the exchange
coupling between the (A–B) nearest and the (A–A (B–B)) next-nearest neighbours. We
may therefore omit the term for the effective field in the present calculations. For the sake
of simplicity: (i) we consider the ‘free-surface model’, in which the exchange coupling
constants (J 2v⊥

AB andJ 1v⊥
AA(BB)) near the surface are assumed to be the same as those of the

bulk; and (ii) except the variations ofε1v‖
ij , other data defined by equation (2.5) are assumed

to be constant in the numerical procedure. Meanwhile, these parameters are considered in
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Figure 3. (Continued)

the analytical equations.
When J 1v

AB/J
2v
AA(BB) = 1 (see figure 3, assuming weak values ofJ 1v

AB), the surface
acoustic modes are not energetic enough, in comparison with other values of the
J 1v
AB/J

2v
AA(BB) ratio (see figures 4 and 5), but the optical modes occur forε

1v‖
ij = 0.50 and

their energy increases with the increasing surface exchange valueJ 1vs
AB . The acoustic surface

magnon mode remains independent of theε1v‖
ij -ratio for low energy. According to the

evolutions of the constraint function illustrated in figure 1 and the bulk and surface eigenstate
solutions, one can conclude that the superantiferromagnetic ground state is more pronounced
than for other values ofJ 1v

AB/J
2v
AA(BB) (see figures 4 and 5). On the other hand, the two

optical modes obtained forε1v‖
ij = 1.70 exhibit a negative slope, and their intersection

point confirms that the precession mode of these two magnons is not degenerate within this
energy range. In addition, the acoustic mode which appears and touches zero frequency at
a wave vector near 0.5 characterizes the clockwise precessional motion of the spin, without
degeneracy, and explains the existence of the surface magnetic anisotropy. This feature was
not observed for the antiferromagnetic ground-state Heisenberg system corresponding to the
domain range valuesJ 1v

AB/J
2v
AA(BB) < 0 andJ 1v

AB/J
2v
AA(BB) > 4 [15]. The most interesting

result is that when the spin layer draws near the surface, the spin magnetization rotates;
this is similar to the ‘pseudohelicoidal’ phenomena in the vicinity of the surface. The
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Figure 4. Energies of bulk and surface spin waves forJ 1v
AB/J

2v
AA(BB) = 3 plotted in the [110]

surface direction. The variation of the acoustic and optical modes at the surface relative to the
bulk magnon domain is given as a function of the ratioε1v‖

ij = J 1vs
AB /J

1v
AB .

equilibrium orientation of the magnetization in the layers which are near the surface is
tilted away from the direction of the magnetization in the bulk.

For J 1v
AB/J

2v
AA(BB) = 3 (figure 4), the acoustic modes which are energetic enough display

a ‘cut-off’ and a negative slope. Their energies increase with increasing values ofJ 1vs
AB ,

and their negative slope is evident for valuesε1v‖
ij > 0.5. The two degenerate solutions

correspond to the two opposite-spin surface precessions. For the values ofε
1v‖
ij > 1.30,

these modes belong to the shaded area which represents the bulk modes projected on the
(001) surface: one can observe the occurrence of an optical mode with negative slope
whenε1v‖

ij > 1.30 which allows the estimation of the Larmor frequency of spin precession.

Furthermore, two degenerate optical branches appear forε
1v‖
ij = 1.30. For one of these

modes, because its energy is maximal atk‖ = 0, the existence of a magnetostatic mode can
be deduced. This mode enters in the bulk band in order to appear in acoustic solution form;
this feature is attributed to the anisotropic ratio defined from the surface anisotropy and
the bulk exchange coupling originating from the broken symmetry of the surface [16]. The
configuration of the transverse magnetization at the surface plane is present. The two kinds
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Figure 4. (Continued)

of optical surface magnon mode correspond to clockwise and anticlockwise precessional
motions of spins, but are degenerate. This is reasonable, because the surface layer is equally
probably occupied by up and down spins. Consequently, the surface spin arrangement
displays different degenerate configurations of minimum energy; the disappearance of the
optical mode with negative slope forε1v‖

ij 6 1.10 is consistent with a canted surface
magnetization in this domain range which cannot be clearly estimated.

For J 1v
AB/J

2v
AA(BB) = 4 (figure 5), we observe a complete disappearance of the

superantiferromagnetic ground state, according to the previous results of computer
simulations. The bulk magnon dispersion curves do not exhibit a negative slope near
the edge of the Brillouin zone. For all values ofε1v‖

ij , we obtain the classical solution of an

optical mode which intersects the bulk magnon band, then atε
1v‖
ij = 1.30 a magnetostatic

mode appears with increasing energy whenε1v‖
ij increases. Two truncated acoustic modes

occur for ε1v‖
ij > 0.50. These modes touch zero frequency near the edge of the Brillouin

zone. One finds that for one of the acoustic branches the point of truncation moves to larger
k‖ which corresponds to the unstable arrangement of spins at the surface.

Let us mention that for the bulk magnon band energy (ε
1v‖
ij = 0), the symmetry gauge

is broken forJ 1v
AB/J

2v
AA(BB) = 1 and less pronounced forJ 1v

AB/J
2v
AA(BB) = 3, according to the
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Figure 5. Energies of bulk and surface spin waves forJ 1v
AB/J

2v
AA(BB) = 4 plotted in the [110]

surface direction. The variation of the acoustic and optical modes at the surface relative to the
bulk magnon domain is given as a function of the ratioε1v‖

ij = J 1vs
AB /J

1v
AB .

previous results concerning the infinite cubic systems when we consider a fully frustrated
lattice with simultaneous ferro- and antiferromagnetic bonds [17]. ForJ 1v

AB/J
2v
AA(BB) = 4,

a new physical solution appears, which confirms the new ground-state antiferromagnetic
structure as previously described in a recent paper [15]. The evolutions of the acoustic
modes in the domain range 0< J 1v

AB/J
2v
AA(BB) 6 4 show that their solutions permit one to

obtain the spin equilibrium position at a surface. Nevertheless, an important question which
remains open is that of the direction of the magnetization at the surface in this structure.

5. Conclusion

In conclusion, this paper gives an illustration of the influence of the magnetic frustration
parameterJ 1v

AB/J
2v
AA(BB) on the dispersion curves at the surface and in the bulk, assuming

exchange bulk–surface interactionsε1v‖
ij . The curvature of the bulk and surface spin-wave

dispersion curves observed in the 0< J 1v
AB/J

2v
AA(BB) 6 4 range illustrates an unstable

rearrangement of spins in the structure. The magnetic phase transition atJ 1v
AB/J

2v
AA(BB) = 4,

which was predicted by computer simulation, was confirmed in this study. Consequently,
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Figure 5. (Continued)

by assuming these results to be correct, one can calculate the surface magnetic behaviour
of the other crystalline phases of FeF3.

Further investigations of frustrated cubic superferrimagnets with|SA| 6= |SB | are
in progress with the aim of applying this theory to Fe1−xMxF3 compounds(M =
Cr,V,Mn, . . .). This methodology can be used to describe the case of topologically
frustrated systems with triangular spin lattices in order to explain the surface magnetic
properties. On the other hand, this work is now being extended to amorphous phases which
exhibit speromagnetic behaviour and for which some structural networks based upon a
continuous random packing of corner-sharing octahedral units have been proposed [18, 19].

From the point of view of the theoretical aspects, the matching method, which was
successfully applied to investigate the magnetic excitations on surface frustrated systems,
gives evidence for the mean surface magnon dispersion curves. The results developed here
can be completed, providing that the values of the surface effective field are known.
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Appendix 1

The parametersD11,D12,D21,D22 given in equation (2.3) are defined as follows:

D11 = −z1v
ij 〈SZB 〉

∑
〈i,j〉

J 1v
AB(i, j)+ z1v

ii ′ 〈SZA 〉
∑
〈i,i〉

J 1v
AA(i, i

′)
{

1

z1v
ii ′

eik‖(ri−ri′ )1v − 1

}
+ z2v

ii ′ 〈SZA 〉
∑
〈i,i〉

J 2v
AA(i, i

′)
{

1

z2v
ii

eik‖(ri−ri′ )2v − 1

}
− z2v

ij 〈SZB 〉
∑
〈i,j〉

J 2v
AB(i, j)+ µ(A)H (A)

(n)

D12 = 〈SZA 〉
[
z1v
ij

∑
〈i,j〉

J 1v
AB(i, j)

1

z1v
ij

eik‖(ri−rj )1v + z2v
ij

∑
〈i,j〉

J 2v
AB(i, j)

1

z2v
ij

eik‖(ri−rj )2v
]

D21 = 〈SZB 〉
[
z1v
ij

∑
〈i,j〉

J 1v
AB(i, j)

1

z1v
ij

eik‖(ri−rj )1v + z2v
ij

∑
〈i,j〉

J 2v
AB(i, j)

1

z2v
ij

eik‖(ri−rj )2v
]

D22 = −z1v
ij 〈SZA 〉

∑
〈i,j〉

J 1v
AB(i, j)+ z1v

jj ′ 〈SZB 〉
∑
〈j,j〉

J 1v
BB(j, j

′)

{
1

z1v
jj

eik‖(rj−rj ′ )1v − 1

}

+ z2v
jj ′ 〈SZB 〉

∑
〈j,j〉

J 2v
BB(j, j

′)

{
1

z2v
jj

eik‖(rj−rj ′ )2v − 1

}
− z2v

ij 〈SZA 〉
∑
〈i,j〉

J 2v
AB(i, j)+ µ(B)H (B)

(n) .

Appendix 2

The (6× 8) matrixMb given in the matching region(16 n 6 4) is

[
Mb

] =

Mb(1, 1) Mb(1, 2) . . 0 0 0 0
Mb(2, 1) Mb(2, 2) · · 0 0 0 0
· · · · · · 0 0
· · · · · · 0 0
0 0 · · · · · ·
0 0 · · Mb(6, 5) · · Mb(6, 8)


where the elementsMb

σξ (E, J
1vs
AB , J

1(2)v
AB , J

1(2)v
AA(BB), εuw, ε

1(2)v‖
uw , ε1(2)v⊥

uw , γ
1(2)v(‖,⊥)
pq (k‖),H

A(B)

a(n) )

are described by

Mb(1, 1) =
[
E −

(
4ε1v‖
ij + 4ε2v⊥

ij + 4ε2v‖
ii ′ (γ

2v‖
ii ′ − 1)− ε1v⊥

ii ′ +
gµb

JS
H
(A)

a(1)

)]
Mb(1, 2) = −Mb(2, 1) = −4ε1v‖

ij γ
1v‖
ij

Mb(1, 3) = Mb(3, 1) = −ε1v⊥
ii ′ γ

1v⊥
ii ′

Mb(1, 4) = −Mb(4, 1) = −Mb(2, 3) = Mb(3, 2) = −4ε2v⊥
ij γ 2v⊥

ij

Mb(2, 2) =
[
E +

(
4ε1v‖
ij + 4ε2v⊥

ij + 4ε2v‖
jj ′ (γ

2v‖
jj ′ − 1)− ε1v⊥

jj ′ −
gµb

JS
H
(B)

a(1)

)]
Mb(2, 4) = Mb(4, 2) = ε1v⊥

jj ′ γ
1v⊥
jj ′
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Mb(3, 3) =
[
E −

(
4− ε1v⊥

ii ′ − ε1v
ii + 4ε2v

ii ′ (γ
2v‖
ii ′ − 1)+ 4ε2v⊥

ij + 4ε2v
ij +

gµb

JS
H(A)
a

)]
Mb(3, 4) = −Mb(4, 3) = Mb(5, 6) = −Mb(6, 5) = −4γ 1v‖

ij

Mb(3, 5) = −Mb(5, 3) = Mb(5, 7) = ε1v
ii γ

1v⊥
ii ′

Mb(3, 6) = −Mb(6, 3) = −4ε2v
ij γ

2v⊥
ij

Mb(4, 4) =
[
E +

(
4− ε1v⊥

jj ′ − ε1v
jj ′ + 4ε2v

jj (γ
2v‖
jj ′ − 1)+ 4ε2v⊥

ij + 4ε2v
ij −

gµb

JS
H(B)
a

)]
Mb(4, 5) = −Mb(5, 4) = −Mb(5, 8) = Mb(6, 7) = 4ε2v

ij γ
2v⊥
ij

Mb(4, 6) = Mb(6, 4) = Mb(6, 8) = ε1v
jj ′γ

1v⊥
jj ′

Mb(5, 5) =
[
E −

(
4− 2ε1v

ii + 4εii ′(γ
2v‖
ii ′ − 1)+ 8ε2v

ij +
gµb

JS
H(A)
a

)]
Mb(6, 6) =

[
E +

(
4− 2ε1v

jj ′ + 4εjj ′(γ
2v‖
jj ′ − 1)+ 8ε2v

ij −
gµb

JS
H(B)
a

)]
.

Appendix 3

The fully square matrixMs is as follows:

[Ms ] =


Ms(1, 1) Ms(1, 2) · · 0 0
Ms(2, 1) Ms(2, 2) · · 0 0
· · Ms(3, 3) · · ·
· · · · · ·
0 0 · · · ·
0 0 · · · Ms(6, 6)


where the elementsMs

σξ (E, J
1vs
AB , J

1(2)v
AB , J

1(2)v
AA(BB), εuw, ε

1(2)v‖
uw , ε1(2)v⊥

uw , γ
1(2)v(‖,⊥)
pq (k‖),H

A(B)

a(n) )

are given by

Ms(1, 1) =
[
E −

(
4ε1v‖
ij + 4ε2v⊥

ij + 4ε2v‖
ii ′ (γ

2v‖
ii ′ − 1)− ε1v⊥

ii ′ +
gµb

JS
H
(A)

a(1)

)]
Ms(1, 2) = −Ms(2, 1) = −4ε1v‖

ij γ
1v‖
ij

Ms(1, 3) = Ms(3, 1) = −ε1v⊥
ii ′ γ

1v⊥
ii ′

Ms(1, 4) = −Ms(4, 1) = Ms(2, 3) = −Ms(3, 2) = −4ε2v⊥
ij γ 2v⊥

ij

Ms(2, 2) =
[
E +

(
4ε1v‖
ij + 4ε2v⊥

ij + 4ε2v‖
jj ′ (γ

2v‖
jj ′ − 1)− ε1v⊥

jj ′ −
gµb

JS
H
(B)

a(1)

)]
Ms(2, 4) = Ms(4, 2) = ε1v⊥

jj ′ γ
1v⊥
jj ′

Ms(3, 3) =
[
E −

(
4− ε1v⊥

ii ′ − ε1v
ii ′ + 4ε2v

ii ′ (γ
2v‖
ii ′ − 1)+ 4ε2v⊥

ij + 4ε2v
ij +

gµb

JS
H(A)
a

)]
Ms(3, 4) = −Ms(4, 3) = −4γ 1v‖

ij

Ms(3, 5) = − [ε1v
ii ′γ

1v⊥
ii ′ C(A, ρ1)+ 4ε2v

ij γ
2v⊥
ij C(B, ρ1)

]
Ms(3, 6) = − [ε1v

ii ′γ
1v⊥
ii ′ C(A, ρ2)+ 4ε2v

ij γ
2v⊥
ij C(B, ρ2)

]
Ms(4, 4) =

[
E +

(
4− ε1v⊥

jj ′ − ε1v
jj ′ + 4ε2v

jj ′(γ
2v‖
jj ′ − 1)+ 4ε2v⊥

ij + 4ε2v
ij −

gµb

JS
H(B)
a

)]
Ms(4, 5) = + [ε1v

jj ′γ
1v⊥
jj ′ C(B, ρ1)+ 4ε2v

ij γ
2v⊥
ij C(A, ρ1)

]



2930 M Tamine

Ms(4, 6) = + [ε1v
jj ′γ

1v⊥
jj ′ C(B, ρ2)+ 4ε2v

ij γ
2v⊥
ij C(A, ρ2)

]
Ms(5, 3) = −ε1v

ii ′γ
1v⊥
ii ′

Ms(5, 4) = −Ms(6, 3) = 4ε2v
ij γ

2v⊥
ij

Ms(5, 5) =
[(
E −

(
4− 2ε1v

ii ′ + 4ε2v
ii ′ (γ

2v‖
ii ′ − 1)+ 8ε2v

ij +
gµb

JS
H(A)
a

))
C(A, ρ1)

− 4γ 1v‖
ij C(B, ρ1)− ε1v

ii ′γ
1v
ii ′ C(A, ρ1)ρ1− 4ε2v

ij γ
2v⊥
ij C(B, ρ1)ρ1

]
Ms(5, 6) =

[(
E −

(
4− 2ε1v

ii ′ + 4ε2v
ii ′ (γ

2v‖
ii ′ − 1)+ 8ε2v

ij +
gµb

JS
H(A)
a

))
C(A, ρ2)

− 4γ 1v‖
ij C(B, ρ2)− ε1v

ii ′γ
1v
ii ′ C(A, ρ2)ρ2− 4ε2v

ij γ
2v⊥
ij C(B, ρ2)ρ2

]
Ms(6, 4) = ε1v

jj ′γ
1v⊥
jj ′

Ms(6, 5) =
[(
E +

(
4− 2ε1v

jj ′ + 4ε2v
jj ′(γ

2v‖
jj ′ − 1)+ 8ε2v

ij −
gµb

JS
H(B)
a

))
C(B, ρ1)

+ 4γ 1v‖
ij C(A, ρ1)+ ε1v

jj ′γ
1v
jj ′C(B, ρ1)ρ1+ 4ε2v

ij γ
2v⊥
ij C(A, ρ1)ρ1

]
Ms(6, 6) =

[(
E +

(
4− 2ε1v

jj ′ + 4ε2v
jj ′(γ

2v‖
jj ′ − 1)+ 8ε2v

ij −
gµb

JS
H(B)
a

))
C(B, ρ2)

+ 4γ 1v‖
ij C(A, ρ2)+ ε1v

jj ′γ
1v
jj ′C(B, ρ2)ρ2+ 4ε2v

ij γ
2v⊥
ij C(A, ρ2)ρ2

]
.
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