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Abstract. A formalism for calculating the bulk and surface spin waves in the ground-state
frustrated superantiferromagnetic Heisenberg system is presented. The magnetic structure
consists of semi-infinite ferromagnetic chains which are antiferromagnetically coupled. The
surface spin-wave theory introducing the matching method is used to calculate the energy of
the surface magnon. The magnon dispersion curve is calculated as a function of the frustration
paramete/% /J24 ;. and the bulk-surface exchange ratf! = i /73 . The behaviour

of the bulk magnon as well as the acoustic and optical surface modes which are found to be very
sensitive to the surface exchange and anisotropy are interpreted by mean&pﬂéﬁu BB)

ratio. The results show that a high instability of bulk and surface spin precession occurs for

0 < J3%/J3% s <4 and disappears fafiy /J2 s = 4. The latter value corresponds to

an antiferromagnetic arrangement of the ground state.

1. Introduction

There have been an increasing number of investigations dealing with uniformly frustrated
systems. These systems, which are periodically defined, have been given exact treatments,
using different approximations [1-3]. Apart from the evident theoretical interest, uniformly
frustrated systems can be found in real physical systems such as antiferromagnetic FCC
alloys and arrays of planar Josephson junctions in transverse magnetic fields [4]. In other
respects, numerous 2D and 3D geometrically frustrated magnetic structures have been
widely investigated during the last decade from both the experimental and the theoretical
points of view, as reported in the literature (see for example [5]). Examples of this
behaviour are exhibited by 3d-transition-metal oxides [6, 7] and fluorides [8, 9]. In some
crystalline compounds, one or several paramagnetic ions build up cationic triangles; so
the antiferromagnetic nature of the superexchange interactions or the presence of single-
ion anisotropy leads to non-collinear magnetic configurations at absolute zero because of
geometrical magnetic frustration [7-9].

In spite of a collinear magnetic configuration, it has been suggested that magnetic
frustration may occur in simple cubic antiferromagnets such ag WF=Cr,Fe V,...).
This frustration originates from the competition of antiferromagnetic exchange interactions
between the first-{};) inter-sublattice nearest and the seconlﬁ-g(B »)) intra-sublattice
next-nearest neighbours. This behaviour was recently confirmed by computer simulations,
and different types of magnetic configuration were evident at absolute zero, associated with
two domains of values of 1% /J2" 5, [10]. The constraint functiorF, which estimates
the degree of magnetic frustration is defined by comparing the magnetic €i&ngyvhich
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Figure 1. Magnetic configurations establishedZat= 0 corresponding to the constraint function
F. plotted with|S4| = |Sz| = 5/2 as a function of J1%/J2%, J1% /J2%] in the basal plane.

results from the system of interacting spins, to the endigy) calculated for the same
magnetic system assuming non-frustrated interactions. The expression is given as follows:

E,
Fo=—p = <Z TipSS® 43 sS4 3 J§;;S<B>S(B>>
(i,j) (i,i") (4,7

-1
. (Zlfj'glisi“)||5}3>| D IS+ D 1 ||S<B>||S<B>|> .
(i, ]) (i,i")

(J,J"
(1.1)

The functionF, is plotted in figure 1.
Let us recall you briefly the most significant results.

(i) For J3%/J% 55 > 4 (the domain whereF. tends asymptotically to-1), the
magnetic configuration corresponds to that in a frustrated cubic antiferromagnet ground
state: the magnetic exchange interactions between the first neighbours are satisfied whereas
those between the second-nearest neighbours are not.

(i) For 0 < J4%/J3% ss < 4 (the domain wherg”. = —1/3), the magnetic structure
results in ferromagnenc chains which are antiferromagnetically coupled—the so-called
ground-state superantiferromagnetic arrangement—for which evidence was recently reported
from the 2D Heisenberg model [11].

So far, to our knowledge, no study has been reported on bulk and surface spin waves in
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this magnetic configuration. This has motivated the present work.

From a theoretical point of view, one of the calculation methods successfully used on the
magnetic properties of surfaces and resonances is the matching method [12]. This approach
makes use of secular equations of spin motion established for the bulk of the semi-infinite
magnetic system, which is shown to contain all of the information concerning travelling
modes, as well as evanescent modes, in the direction perpendicular to the magnetic surface.
The eigenvalue matrix is derived from the Heisenberg Hamiltonian, and the energies of
the localized states for the surface magnons are obtained using this method, which consists
in matching the properties of bulk magnons with evanescent spin waves on the surface.
The existence, the nature and the shape of the solutions are discussed in terms of surface
exchange parameters, by taking into account the results of simulation.

Firstly, in next section we present the bulk dynamical properties, and the surface spin-
wave eigenvalue equation is derived using the random-phase approximation. Then, in
section 3 the theory of the matching procedure method used in order to describe the localized
energy states of surface magnons is developed. The bulk and surface spin-wave spectra are
discussed in section 4, and concluding remarks are summarized in section 5.

2. Bulk dynamical properties

The qualitative features of surface spin waves can be easily illustrated using the (001)
face of the simple cubic structure. The crystal is assumed to be infinite in-ttand
y-directions and extended from = 0 to z = oco. The coordinate system for the (001)
surface is illustrated in figure 2. The-axis is chosen as the inward normal to the
surface, whereas the—y plane is always parallel to the surface plane. Layers which
are parallel to the surface are numbered initially, the surface being considered as the
first layer. Beyond the second layer, all of the exchange interactions have the bulk value
Jjg)“(i, J) for antiferromagnetic inter-sublattice (A—B) nearest and next-nearest neighbours,
and Jj”A(BB) (i, i(j, j)) for ferromagnetic intra-sublattice (A—A (B—B)) nearest neighbours
only. The nearest- and the next-nearest-neighbour exchange interactions between spins
on the surface are respectively described jj)f(i,j) and Jﬂs(BB)(i,i(j,j)), and the
interactions between the first and second Iayers’}y(i, j) and Jj’;\l(BB)(i, i(j, j))-

The general exchange Hamiltonian for two interpenetrating ferromagnetic sublattices A
and B extended to the second-nearest-neighbour exchange interactions including the Zeeman
effect is expressed as
H=Y 52GCHSVS® + > Lhs GG insi sy Sui

(@.J) (i,i'(j.J")
+ pA B HGD N S (2.1)
(i,

Here, u4® = gpu, are the gyromagnetic ratios for ions on A and B sublattices
respectively. i andi’ run over the sublattice A sites only, and j° over the sublattice
B sites only. H;,\"’ = Ho+ H,\}" are effective fields experienced by the ions on the A
and B sublattices respectively, and are due to the externally appliedHielnd to the
effective anisotropy fieIdSH(ﬁg) acting on thenth layer. They are taken to lie along the
easy direction of magnetization, which itself is taken to be the direction of-dvas. We
take H,,.’ to be H/’ on the surface and!® otherwise. The summation in (2.1) is
over all distinct pairs.

We define the spin-lowering operatass™ = (1/+/2)(5* +is;*) with » = A or
B. Due to the 2D periodicity of the surface layer, we define the wave végter (k,, k,)
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Figure 2. The (001) surface of a simple cubic superantiferromagnet. Beyond the second layer,
all exchange interactions have the bulk vauﬁ)”(i, j) for antiferromagnetic inter-sublattice
(A-B) nearest and next-nearest neighbours, aAﬁpI(BB)(i,i’(j,j/)) for ferromagnetic intra-
sublattice (A—A (B-B)) nearest neighbours only. The nearest- and the next-nearest-neighbour
exchange interactions between spins on the surface were respectively defim§§ (by;) and

Jﬂ‘(BB) (i,i'(j, j)), and the interaction between the first and second Iayer$§§§/(i, j) and

Jx%sn 1", ), respectively.

in the reciprocal space, and the opera S ﬁ,ju for each sublattice as
o = Z S gk and ST = Za,;;e""”"'
(@) (k)

+ +(B) 7”(”7" +(B) __ + 7”(”7‘
B = (2): S Pethin and S = %ﬂkue J.
J

2.2)



Spin waves of the Heisenberg system 2919

r; andr; denote the- and j-atom vector positions on the-y plane, respectively.
The equation of motion/i dS; /dt =[S, H] leads to a two-sublattice system:

IE(X;H = Dlla/; + Dlzﬂa

. 2.3)
ihB = Do + Doy
where the Dog (i, J15" . 2 55y 200" 2ot Sy, HA®) are given in appendix 1.

» Liinjjry
Herezilj(z)” represents the inter-sublattice (A—B) number of nearest- and the second-nearest-

neighbour atoms, respectively, amlb‘fj)j'; corresponds to the intra-sublattice (A—-A (B-B))
numbers.

In order to introduce the amplitude of precessional spin waves, the two-dimensional
spatial Fourier transform operatéf™ (R, w) was defined by

LY (Ri(j), 0) = (2a) 2 / dky exp(ikynii)Uyer,,,ki» @) (n>1) (2.4)

with L® = of () if 2 = A (B), and the quantities(]rfﬁ,)e[(/))(k“,a)) are spin-wave
amplitudes for therth-sublattice atorm () on thenth layer located aR;;,. The surface
corresponds to the layer labelled by= 1. Here the notation is such th&ft, = (1;(;), na),
wheren;(;, is a two-dimensional position vector of the aténj) in the x—y plane, andia
is the coordinate position normal to the surfagaqthe layer spacing). The inter-sublattice
(A-B) and intra-sublattice (A—A (B—B)) nearest- and the next-nearest-neighbour vectors are
denoted byA;?" and A;7", | respectively.

Introducing the following parameters:

heo> — gy H
G Lad e

T3S
Lol __ ];ﬂ?s 20| _ Jf%jés(BB) 2v _ Jfl;l(BB) 1v _ J};E\(BB) (2 5)
0T wun T WU T Ty wun T Ty :
vl Lv 2v 2vl
ity = % i = JAJASB) g = j/if & = J]AT?;‘
AB AB AB AB

The equations for the spin-wave amplitude of eadh sublattice layer, which are
obtained from equations (2.3), (2.4) and (2.5), can be written in the matrix form

[M°]|U») = 10) (2.6)

where the matrix elementd?, (E, J35, 132", 1% 5, euw, euie " e220%, yp? 0 k),
A(B)
H

o) are given in appendix 2, an@/») is the vector column defined by

)=
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v

The coefficients/ . (k) andy2'™" (k) are as follows:

1 Nl 1
y&vll (k) = oo Z dhkidi’ — > [COQkxa) + Cos(kya)]
Zij (A,l;'”)
1 H vl
Vi%’v(ﬁj’) (k) = T Z gdhidiion = 1
G (AR @2.7)
200 = 1 Z dhidiity — 1 [costk, + ky)a + cosk, — k,)a] .
Yiir(jjin K1) = 3 2 x v)a * »)a
G (AR
2vl 1 eikHAzyl 1
yij (kH) = ZZTL Z ij = é [Coikxa) + COS(kya)] .
il

In obtaining equation (2.6), we have employed a random-phase approximation and
replacedsﬁ B by its thermal expectation value. At absolute zeéfos= 0, all of the quantities

(87) — S, whereS is the magnitude of the spin of the magnetic ion. At low temperatures,
the departure ofS%) from S, due to thermal excitation of spin waves, is small. In this
temperature rangeSZ) is approximately uniform, except near the surface. Mills and
Maradudin [13] have concluded that the deviatibp = S — (57) is twice as large for the
surface spingn = 1) as for the bulk spinsn(— o¢). The principal result of this spatial
variation in(S?) is to produce an effect similar to a weakening of the exchange constants at
the surface. As the temperature increases, the effect of the surface on the spatial variation
of the magnetization becomes more important. The numbers of layers whose magnetization
is substantially lower than that of the bulk increases with increasing temperature. In this
work, we shall limit our discussion t& = 0, for which (S?) = S for all n.

3. Model surface spin waves

Let us consider the (001) surface of a semi-infinite superantiferromagnetic lattice with
IS4l = |Sg| = 5/2 (see figure 2). Thus each atomic spin gitg/) of each corresponding
A-sublattice will be described by two integers (), na) as previously defined.
In general, the precessional amplitude field of quantum spins in the bulk regiprB)
can be described from group theory, including the translation operator properties [12, 14]
via a general linear development on a complete set of the evanescent ang: butk;)
modes:
ne+np
Un,2) =Y P.CO, p)p" *(E, ky, {) (3.1)
=1
where the weighting coefficient®, characterize the contributions of different modes in
the bulk precessional amplitude field, and ¢\, p,) are the corresponding polarization
vectors which represent the cofactor of it#&ex 2) dynamical matrixD obtained from the
previous expression, equation (2.3), with the condition

ne+np 2
Yo lctpol =1 3.2)
¢=1
Owing to the 2D periodic character established by the mean-field approximation for the
surface region, a wave vectdf characterizes a two-dimensional Brillouin magnetic cell.
Using the quantities, = k.a, ¢, = k,a andp = €%¢, a set of evanescent modes in the
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bulk region is obtained using equation (2.3) such that the matrix determingi)detO,
which leads to a polynomia) (p) equation form, giving:

1(2) 1(2) 1(2) 12 A(B
v [P(Ea Tan " Taaisey $x By 2 s Saceys Hi ))] =0 (3.3)

Satisfying equation (3.3), there exists a trivial solution which results from the secular
equation of the fourth degree jn Both phase factorg andp~! are solutions, because this
system is Hermitian. We can then obtain a trivial solution which yielgssecular equation,
in which for each point in the spadé, k), there are four pairs of roots, p=1), with
np, roots p such that|p| = 1 describes the projected bulk magnon modes on the surface,
represented by the shaded area in the figures plottedzamdots p such that/p| < 1
describes evanescent modes. The sg#te) is hence divided into bulk magnon bands
(np > 0), and zonegn, < 0) within which the density of states of bulk magnons vanishes.
The rootsp for which |p| > 1, which give divergent solutions at infinity, are not taken into
account in the present analysis.

The analysis of surface magnon branches requires the knowledge of the complete set of
evanescent modes in the bulk region. These can be characterized by a complex phase factor
which describes the decrease of the precessional amplitude with increasing penetration into
the crystal [12]. Denoting this factor in the normal direction to the surfage #g bulk and
evanescent modes of magnons can be characterizéd byl and|p| < 1, respectively.

Denoting the vector composed by the coefficieRtsintroduced above agP), and the
vector composed via a choice of a set of six consecutive compoBEhtof the surface
and matching regionsl < n < 3) as|U®W), and using equation (3.1), one obtains the
matrix equations

UP) = [AE, 612",y @D &y, pr), COn, p) ] | P) 3.4)
v -1
|P) = [A(E, 2?1(2) , VI;I.(EZ)v(H.L)(k”’ ,0;), C(r, IOC)] |U(A)) (35)

uw

where [A] is a (4 x 4) matrix whose elements, (E, eX@, y @D k), C (1, o))
are deduced using equation (3.1). Thus, on successively applying (3.4) in the linear system
(3.3) for the component& ™), and then (3.5) to eliminate the coefficien®s, the linear

n

homogeneous system becomes
[E*I — M* (@, , {pD]IU) = |0) (3.6)
where/ is the unit matrix and

A 1vs 12 12 12 1(2vLl
Dk = 0N R A Taksmy funs Eun s € Vg (ki P, ).

In equation (3.6),JU") is a vector amplitude of the sublattice on the nth layer
near the surface and matching regioh& (¢, «) is a (6 x 6) mean dynamical matrix which
describes the spin-wave dynamics of the system {ahik a setof thee =1,2,...,n.+n,
r00ts p(E, J13", JA k) x. @y, Sacey. HA®)) given by thep-secular equation (3.3), in
the (E, k) space. A non-trivial solutionU{*) requires that the determinant of this system
vanishes, which defines an algebraic equatioB janvhose real and positive solutiod (k)
yield the mean surface magnon branches inrthigones, and the surface resonances in the
zones wherey;, # 0. Consequently, the localized states of magnons can be calculated also
when the determinant system (3.6) vanishes:

detM*) = 0. (3.7)

The matrix elementd/* are developed in appendix 3.
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Figure 3. Energies of bulk and surface spin waves ﬁj‘%”ﬂ(am = 1 plotted in the [110]
surface direction. The variation of the acoustic and optical modes at the surface relative to the
bulk magnon domain is given as a function of the raﬁ/@‘ = Jj%‘*/]j‘é.

4. Numerical results and discussion

In the present paper, the localized energy states for the surface magnons were calculated
in the [110] direction for the first bidimensional magnetic cell. The evolutions of surface
magnons are reported in figures 3 to 5 as functions of the exchange bulk—surfa@%”#atio

to the values of the frustration paramet%rg/Jj“A(BB) =1, 3,4. The matching technique
shows that the surface eigenstates exist within the bulk continuum of states. An excitation
corresponding to a poirt£°, kﬁ) in the continuum which is localized near the surface would
decay rapidly into non-local bulk-type states. The surface states change their magnetic
character at critical values (xfl.lT’” which strongly depend on the nature of the exchange
coupling between the (A-B) nearest and the (A—A (B-B)) next-nearest neighbours. We
may therefore omit the term for the effective field in the present calculations. For the sake
of simplicity: (i) we consider the ‘free-surface model’, in which the exchange coupling
constants ({5 and J ;) near the surface are assumed to be the same as those of the

bulk; and (ii) except the variations @f}””, other data defined by equation (2.5) are assumed

to be constant in the numerical procedure. Meanwhile, these parameters are considered in
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Figure 3. (Continued)

the analytical equations.

When 14 /2 55 = 1 (see figure 3, assuming weak values Af;), the surface
acoustic modes are not energetic enough, in comparison with other values of the
Jj'g/]j}g(BB) ratio (see figures 4 and 5), but the optical modes occursj;ﬂ'r: 0.50 and
their energy increases with the increasing surface exchange YgjueThe acoustic surface
magnon mode remains independent of #}g!-ratio for low energy. According to the
evolutions of the constraint function illustrated in figure 1 and the bulk and surface eigenstate
solutions, one can conclude that the superantiferromagnetic ground state is more pronounced

than for other values of ;}/J%, 55, (see figures 4 and 5). On the other hand, the two

optical modes obtained foa*l.l?’” = 1.70 exhibit a negative slope, and their intersection

point confirms that the precession mode of these two magnons is not degenerate within this

energy range. In addition, the acoustic mode which appears and touches zero frequency at
a wave vector near 0.5 characterizes the clockwise precessional motion of the spin, without

degeneracy, and explains the existence of the surface magnetic anisotropy. This feature was
not observed for the antiferromagnetic ground-state Heisenberg system corresponding to the
domain range values;y/J3, 55 < 0 andJiy/J3 ss > 4 [15]. The most interesting

result is that when the spin layer draws near the surface, the spin magnetization rotates;

this is similar to the ‘pseudohelicoidal’ phenomena in the vicinity of the surface. The
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Figure 4. Energies of bulk and surface spin waves ft; / /2", ;5 = 3 plotted in the [110]
surface direction. The variation of the acoustic and optical modes at the surface relative to the
bulk magnon domain is given as a function of the raﬁﬂ‘ = Jj‘};/]j”é.

equilibrium orientation of the magnetization in the layers which are near the surface is
tilted away from the direction of the magnetization in the bulk.

For Jj%/]j”A(BB) = 3 (figure 4), the acoustic modes which are energetic enough display
a ‘cut-off’ and a negative slope. Their energies increase with increasing valuéssof
and their negative slope is evident for valua#” > 0.5. The two degenerate solutions

correspond to the two opposite-spin surface precessions. For the valu;%”éﬁ of 1.30,

these modes belong to the shaded area which represents the bulk modes projected on the
(001) surface: one can observe the occurrence of an optical mode with negative slope
wheneilj”” > 1.30 which allows the estimation of the Larmor frequency of spin precession.

Furthermore, two degenerate optical branches appeaafilj?fy)rz 1.30. For one of these
modes, because its energy is maximatgi 0, the existence of a magnetostatic mode can

be deduced. This mode enters in the bulk band in order to appear in acoustic solution form;
this feature is attributed to the anisotropic ratio defined from the surface anisotropy and
the bulk exchange coupling originating from the broken symmetry of the surface [16]. The
configuration of the transverse magnetization at the surface plane is present. The two kinds
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of optical surface magnon mode correspond to clockwise and anticlockwise precessional
motions of spins, but are degenerate. This is reasonable, because the surface layer is equally
probably occupied by up and down spins. Consequently, the surface spin arrangement
displays different degenerate configurations of minimum energy; the disappearance of the
optical mode with negative slope fm[lj”” < 1.10 is consistent with a canted surface
magnetization in this domain range which cannot be clearly estimated.

For {j”B Jf?(gg) = 4 (figure 5), we obs_erve a completg disappearance of the
superantiferromagnetic ground state, according to the previous results of computer
simulations. The bulk magnon dispersion curves do not exhibit a negative slope near
the edge of the Brillouin zone. For all valuesaﬂf”, we obtain the classical solution of an
optical mode which intersects the bulk magnon band, theﬁ].”&t: 1.30 a magnetostatic
mode appears with increasing energy Wh\%ﬂ increases. Two truncated acoustic modes
occur fore}”H > 0.50. These modes touch zero frequency near the edge of the Brillouin
zone. One finds that for one of the acoustic branches the point of truncation moves to larger
ky which corresponds to the unstable arrangement of spins at the surface.

Let us mention that for the bulk magnon band eneigy'(= 0), the symmetry gauge
is broken forJ 3} /J%% 55 = 1 and less pronounced foii}, /J2Y 5 = 3, according to the
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Figure 5. Energies of bulk and surface spin waves ft; / /2", ;5 = 4 plotted in the [110]
surface direction. The variation of the acoustic and optical modes at the surface relative to the
bulk magnon domain is given as a function of the rafil = J1u/ /%,

previous results concerning the infinite cubic systems when we consider a fully frustrated
lattice with simultaneous ferro- and antiferromagnetic bonds [17]. B8y J3Y 55 = 4,

a new physical solution appears, which confirms the new ground-state antiferromagnetic
structure as previously described in a recent paper [15]. The evolutions of the acoustic
modes in the domain range 9 Jj%/!jjg(BB) < 4 show that their solutions permit one to
obtain the spin equilibrium position at a surface. Nevertheless, an important question which
remains open is that of the direction of the magnetization at the surface in this structure.

5. Conclusion

In conclusion, this paper gives an illustration of the influence of the magnetic frustration
parameter/ 3, J/fz(BB) on the dispersion curves at the surface and in the bulk, assuming
exchange bulk—surface interactio&#”. The curvature of the bulk and surface spin-wave
dispersion curves observed in the © Jj'g/le/g(BB) < 4 range illustrates an unstable

rearrangement of spins in the structure. The magnetic phase transit@g/altﬂ(w) =4,
which was predicted by computer simulation, was confirmed in this study. Consequently,
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by assuming these results to be correct, one can calculate the surface magnetic behaviour
of the other crystalline phases of FeF

Further investigations of frustrated cubic superferrimagnets WSth # |Sp| are
in progress with the aim of applying this theory to;FgM,F; compounds(M =
Cr,V,Mn,...). This methodology can be used to describe the case of topologically
frustrated systems with triangular spin lattices in order to explain the surface magnetic
properties. On the other hand, this work is now being extended to amorphous phases which
exhibit speromagnetic behaviour and for which some structural networks based upon a
continuous random packing of corner-sharing octahedral units have been proposed [18, 19].

From the point of view of the theoretical aspects, the matching method, which was
successfully applied to investigate the magnetic excitations on surface frustrated systems,
gives evidence for the mean surface magnon dispersion curves. The results developed here
can be completed, providing that the values of the surface effective field are known.
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Appendix 1

The parameter®;,, D1,, D71, D2y given in equation (2.3) are defined as follows:

Dy = —z'(S%) ij'j;(z 7+ 2S5 ZJ/%Z(! { ghiti—r™ 1}

(i,7)
250 Yot [ e

A
th SB ZJAB(I»])+M(A)H((,,))
(i.j)

D1z = (S7) [ ij%(z J) e"‘ﬂ(" AR P A ]) éku(r, r,)zb}

(i, ))

Dy = SB |: Z‘Iﬂ?(l J)—e'k”(r' ;)‘ ij%(l J)Tékw' ,])1j|

(i.J) ij (i, )) Zij
1. .
Dy = —z}*(S5) Y A4, n-%ﬁﬁwz>§:féxjj>{héhw—vf —1}
(i.J) (J.J) <jj
SH) D i J){ ghit=r® 1}
(.7 ]]
= USD Y IR D) + P H.
(i)
Appendix 2

The (6 x 8) matrix M? given in the matching regiofil < n < 4) is

MP(LD) M°(1,2 . . 0 00 0
MP@21) MP22 - - 0O 00 0
: : . . .0 0
b _

(M ]=1 . : 0o 0
0 0 - : . .

0 0 - - M'®6,5 - - M"®.8

where the element®t?, (E, J15, 39", J100 o eww. gV, €220,y 00 ey, HAS)

are described by

MP(1,1) = [ (481” +as2 42 (21— 1) — et 4 81 g H;a)))]

JS
MP(1,2) = M2, 1) = —4e]y}"!
M’(1,3) = M*(3,1) = —eltty it

MP(1,8) = —M"(4,1) = —M"(2,3) = M"(3,2) = —4eZty 2

’]

b _ Lu|| vl 2v|l . 20l wl SHb (B
MP(2,2) = |:E + (48 + e ey (v — D — e — 7S Ha(l))]

MP(2,4) = M"(4,2) = ;) vt



M"(3,3) = |:E - (4 — et — el + A2 (2 — 1) + 42 4 482 + %Hﬁ
M"(3,4) = —M"(4,3) = M"(5,6) = —M"(6,5) = —4y,}"!

M’3,5 = —M"(5,3) = M*(5,7) = ¢y 0+

M"(3,6) = —M"(6,3) = —4e?}y;*

b _ vl 1 v, 20| 2vl 2 EMb 4 (B
MP 4, 4) = |:E + (4— g — sj;, + 481-;’()/_”/ -1 +48,»j” + 481-;) - ﬁHa
M"(4,5) = —M"(5,4) = —M"(5,8) = M"(6,7) = 4e?/y;"*

M"(4,6) = M"(6,4) = M"(6.8) = ¢/} "
M"(5,5) = [E - (4 — 268"+ dein (v — 1) + 8 + gj’g”mM)]
%3
M"(6,6) = |:E + (4 — 218+ ey () — 1) + 82 — "";SZ’HW)] .
Appendix 3
The fully square matrixd/* is as follows:
M(1,1) M*'(L2)
M(2,1) M*(2,2)
5 M*(3,3
[M°] = ‘ . (‘ )

0 0 .

0 0 M* (6, 6)
where the element®f}, (E, J15, J39°, J100 1 eww. g 1, e2@0L, g2 ()
are given by

s v v v v v gl‘L
M1, 1) = |:E - (481.1]. Vo ae2t a2 (2 — 1) — et + J;H;{%)]
M*(1,2) = —M*(2.1) = —4¢; "y
M*(1,3) = M*(3,1) = —elt iyt
M (14)=-M'(41) = M (2,3) = —M*(3,2) = -4y 7"

s o] Y 2v] . 2| v 8Mb 1 (B)
M*(2,2) = [E + (48ij +AefT e (v — D — et - Ham)]

Spin waves of the Heisenberg system

1]

M*(2,4) = M*(4,2) = el -yt

M* (37 3) —

M (3’ 4) —
M’(3,5) =
M*(3,6) =

M’4,4) =

M’(4,5) =

7]

|:E — (4— aili‘fl

‘(4.3 —
—M’(4,3) = —4y;
— [eltvirtC(a, po) + 463 v 2 C(B, py)]

— [eh v C(A. po) + 462 V2 C(B. p2)]

v v, 20|
— gii/ + 48,‘1"()/[["

|:E + (4 — 8]-1]‘-4 — ejljf’, + 481-23()"23H

AN

+ ey C(B, p1) + 42 V5 C(A, po)]

JS

— 1) +4ePt + 4e? +

— 1) + 42 + 4e? —

8H
JS

8MUb H®

JS

H®

a

a

)

)

k),

)

)
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M’ (4,6) = [,,y,,“cw p2) + 42y TC(A, po)]
M*(5,3) = —gVy vt
M’(5,4) = —M*(6,3) = 4e?/y;""

M’ (5,5) = [(E - (4— 2l + 4e2 (2 — 1) + 86 JS Hj*”))C(A, p1)

4)/Uv”C(B 'Ol) - 811 y”vC(A :01)101 482UVZIULC(B, Pl)pl

M*(5,6) = |:<E _ (4_ 28 + 4821)()/121)\\ 1) + 85‘1-2;) + gjl‘;f) H:A)))C(A, 02)

4)/Uv”C(B '02) - 811 y”vC(A :02)102 - 432UVUULC(B, p2)p2

M’(6,4) = ejlyt

M*(6,5) = ( (4 261+ 462(y 2“”—1>+8Zv—i’“‘SZ’H;m»cw,po

+ 4y C(A, p1) + ]y C(B. pr)p1 + 42 Y2 C (A, p)pa

i v %
wie o =[(k+ (a2l v o —vvad - o) e o

+ 4y C(A, ) + ey C (B, p2)p2 + 462 y2 L C (A, p2)p2 |-
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